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Summary. The present study performed to investigate dye removal efficiency (DR%) of solutions 
containing direct blue 71 (DB71) using electrocoagulation (EC) process. applied voltage (VEC), Initial pH 
of the solution (PH0), time of electrolysis (tEC) and initial dye concentration (C0) considered as more 
effective operational parameters. The experimental data obtained in a laboratory batch reactor. The 
achieved DR% of 4.4-99.3 gained under experimental conditions. The multiple linear regression (MLR) 
and non linear artificial neural network (ANN) models utilized to EC modeling and DR% predicting. By 
applying best MLR and ANN models to predict the test set, Q2

ext and RMSE determined 0.79 and 13.7 for 
MLR and 0.93 and 8.01 for ANN. Further tests and data treatments were done for more validation and 
introduce model applications and also to clarify other aspects of EC, such as Leave-n-Out (n=1, 43-44, 
74) cross-validation, energy consumption calculation, graphical prediction of the optimum experimental 
conditions and diversity test. The experimental results proved that EC is an effective way to treat dye 
solutions containing DB71. VEC, pH0, tEC and C0 parameters influenced DR% and the ANN and MLR 
have been successfully used to modeling EC. 

 
Keywords: Dye removal; Direct Blue71; Electrocoagulation; Multiple linear regression; artificial neural 
networks. 
 
Introduction 
 

Dyes in wastewaters are a serious 
environmental concern. They can absorb and reflect 
sunlight and prevent it from reaching the 
microorganisms of water. Thus, bacteria have not 
suitable circumstances to grow. This leads to 
disastrous effects on food chain [1, 2]. Dyes are 
classified by their chemical and dyeing properties. 
The main groups are azo, anthraquinone, 
phthalocyanine and triarylmethane [3]. Synthetic azo 
dyes comprise more than half of all dyes production 
[4]. They are used in textiles, foodstuffs, leather and 
many other products. Also, azo dyes are about half of 
dyes used in textile industry. Because of their 
toxicity, a lot of problems have arisen due to release 
of some of these products into the environment[3, 5]. 

 
Some methods have been introduced to 

remove dyes from colored effluents such as 
adsorption, precipitation, chemical degradation, 
photodegradation, biodegradation, chemical 
coagulation and electrocoagulation. Owing to the 
complex structures of azo dyes, biological, physical 
and chemical treatments of dye effluents are 
inefficient [6-8]. In the other hand, azo dyes are 
usually designed to resist against aerobic 
biodegradation [4]. Adsorption and precipitation 
processes are relatively time-consuming and 
expensive with low efficiency [9]. Chemical 

degradation by oxidative agents such as chlorine is 
the most important and effective method, but it 
produces some high toxic side products such as 
organochlorine compounds. Photo oxidation by 
UV/H2O2 or UV/TiO2 needs additional chemicals and 
therefore causes secondary pollution [6, 7].  

 
In recent years, electrochemical treatment 

methods such as electro-oxidation and electrocoa-
gulation (EC) have drawn great attention as a 
Biocompatible and cost-effective technique. EC 
involves the in-situ generation of coagulants by 
electrolytic oxidation of an appropriate sacrificial 
anode. The electrical current causes the dissolution of 
metal electrodes into wastewater. The metal ions, at 
an appropriate pH, can form wide ranges of 
coagulated species and metal hydroxides which 
destabilize and aggregate the suspended particles or 
precipitates and adsorb dissolved contaminants [10]. 

 
The electrodes can be made of aluminum 

(Al) or iron (Fe) plates or from scraps such as Fe or 
Al millings, cuttings, etc. The Al plates have applied 
in water and wastewater treatment either alone or in 
combination with Fe plates due to the high 
coagulation efficiency of Al3+ ion [11]. The 
electrolytic dissolution of the Al anode produces the 
cationic monomeric species such as Al3+ and Al 
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(OH)2
+ in acidic solutions. In appropriate pH values, 

they transform first to Al(OH)3 and finally 
polymerize to Aln(OH)3n based on  following 
equations : 

 

 

Al → Al3+ (aq)+3e− 
Al3+ (aq) +3H2O → Al(OH)3 +3H+(aq) 
nAl(OH)3→ Aln(OH)3n 

 

However, depending on the pH of the 
aqueous medium, other ionic species, such as 
Al(OH)2

+, Al2(OH)2
4+ and Al(OH)4

- may also be 
produced in the system. In addition, various forms of 
charged multimeric hydroxo Al3+ species may be 
appear under given conditions. These gelatinous 
charged hydroxo cationic complexes can effectively 
remove pollutants via adsorption [12]. 

 

EC has been successfully used for decades 
to treat the wastewaters of various sources like: 
textile [10, 13], food and protein [14], phosphate 
[15], yeast [16], urban [17], saline [18], chemical 
fiber plant [19], restaurants [14], tar sand and oil 
shale [20], landfill leachate [21], arsenic containing 
smelter [22] and dye stuff [23]. Although there have 
been a remarkable amount of studies on EC 
technique for wastewater treatment, but large-scale 
applications of this technology have been relatively 
few. One possible reason is the energy demand of the 
EC. The aspect of hydrogen recovery from the EC 
has been studied and can be a probable solution for 
the inefficiency  of EC [24]. 

 
Appearance of new methods like artificial 

neural network for EC modeling reported recently [7, 
25-29]. The reports cannot be confident without more 
rigorous statistical validations. Applications of EC to 
remove the azo dyes and use of ANN method to 
model the EC have inspired us to perform more 
exhaustive studies. The DR% of the dye solution 
containing DB71 azo dye has been investigated by 
EC method. The dye is soluble in water and belongs 
to Azo dyes group. Several parameters such as EC 
voltage (VEC), initial pH (pH0), initial concentration 
(C0) and EC time (tEC) were investigated and obtained 
data used to construct the multiple linear regression 
(MLR) and artificial neural network (ANN) models 
to predict DR% of EC [30-32].  

 
Results and discussion 
 
DR%  

 
In the first three concentrations of DB71, 

DR% measured in different levels of PH0, VEC and 
tec. The levels of each parameter selected based on 
our best information of previous studies and also 
regarded to actual conditions of textile wastewaters. 

The obtained results summarized graphically in Fig. 
1. A Glance at Fig. 1 shows two levels for DR%, 
more than 80% (green dots) and less than 80% (blue 
dots). Fig. 2 displays the effect of each investigated 
parameters. As it seen from Fig. 2, different levels of 
experimental parameters cause to different DR% and 
various rates of dye removal.  

 

Fig. 2 also shows that the removal rate 
before achieving ‘level off’ of DR% diagram follows 
two different patterns, slow and fast.  Two lines with 
different slopes on either side about DR% 50 
(inversion point) in diagrams of Fig. 2 obviously 
demonstrate this fact. In order to more explanation, 
competition between two different mechanisms 
before and after inversion point suggested. First, 
coagulant products and dye adsorb to form small new 
coagulum particles. The second suggested mecha-
nism is dye adsorption on the formed coagula in the 
first mechanism. We assume that the significance of 
second mechanism increases when the first 
mechanism proceeds enough. Refer to results; the 
importance of second mechanism is more than first 
one near about DR% 50. It explains the further speed 
of removal after inversion points in diagrams. 
 

Effect of C0 and tEC on DR% 
 

Actually, the textile plant’s wastewaters 
vary in dye concentration. So it is essential to 
investigate the effect of C0 on EC. Therefore, 
different dye concentrations at three levels 20, 50 and 
100 (mg/L) studied. Fig. 2 shows that, solutions 
containing higher C0 need more tEC to reach higher 
level of DR% (> 80). The reverse dependence of 
DR% to C0 presented with a histogram in Fig. 3 by a 
different way. 

 

As seen from the histogram in Fig. 3, in all 
three concentrations, 72 samples provided with 
similar conditions. When C0 was 20 (mg/L) only 28 
samples didn’t achieve the higher level of DR% but, 
when C0 was 100 (mg/L) the value raised to 40. It is 
necessary to be mentioned that this pattern of 
dependence has been reported previously [7]. It is 
based on this fact; more initial concentration of dye 
requires more coagulants (Al3+) to remove. The 
electro coagulant concentration is dependent on 
applied voltage, conductivity of solutions, PH0 and 
tEC. When PH0, VEC, and C0 are constant, tEC is the 
only factor that plays an effective role on production 
of coagulant and then DR%. Therefore, higher C0 
requires more coagulant to remove and more 
coagulant requires more tEC to produce. In Fig. 2 we 
illustrated this fact that tec affected DR%. Actually, 
by increasing tec level of PH0, VEC and C0 also 
increased, which finally led to DR% growth.  
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Fig. 1: DR% in 216 samples and 27 experiments. 
 
Effect of pH0 on DR% 

 

Experiments were performed by adjusting 
the pH0 at 4, 7 and 9 to investigate the effect of pH0 
on DR%. Effects of pH0 on EC are shown in Fig. 2 
and 4. Conditions with pH 4 had the best efficiency 
in all tests. In the other hand, DR% >80 and tEC< 30 
min at the same time were available at PH0 4, only 
(Fig. 2). The results were in good agreement with 
well-known statement that the influent pH is a 
significant parameter influencing the performance of  
EC [33].  

 

The solid precipitate of aluminum hydroxide 
is formed in pH 4-6. solubility of aluminum 
hydroxide increases when the solution becomes 
either more acidic or alkali .  
 

Al(OH)3+OH- → Al(OH)4
- 

Al(OH)3 +H+(aq)→ Al(OH)2
+ (aq) +H2O 

 

It is in good agreement with optimum value 
for pH0 4 in our experiments. But about pH0 7, that is 
near the optimum range, we can say, the prominence 
of pH 4 rather than 7 is due to effect of pH on the 
other parameters like solution conductivity and IEC. 

 

Effect of VEC on DR% 
 
VEC is an important factor strongly 

influences the performance of EC [34]. Fig. 2 proves 
the direct relation between DR% and VEC in our 
experiments. In the other hand, DR% achieved higher 
value in less tec for similar combined conditions of 
pH0 and C0 when VEC is in the higher level. 

Furthermore, Fig. 5 shows the effect of VEC in a 
different manner. It shows that the number of 
experiments achieved DR% upper 80 will increase 
when VEC increases, too. W.L. Chou et.al, reported 
that lower voltage was unable to completely 
destabilize the suspended oxide particles in the 
solution [34]. Also, it may be due to VEC that causes 
more IEC which finally results in more coagulant 
production. 
 
Results of ANN model 

 
The best ANN model constructed using two 

hidden layers, 14 neurons for both hidden layers and 
0.11 learning rate. The tansig transfer function 
selected for input and hidden layers and purelin for 
output. Once the network trained, the weights and 
bias of each neuron and layer are saved in the ANN 
model. Then, they are used to estimate the test set. 
The (4:14:14:1) ANN trained with 130 dataset by the 
back propagation algorithm. The tansig and purelin 
transfer functions define as Equations 1 and 2, 
respectively. In order to evaluate the ANN model 
predictability, the sample of ANN model predictions 
and their related experimental results are shown 
together as colored surface and black dots, 
respectively (Fig. 6).  

 

1
2n))exp((1

2tansig(n)a −
−+
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(1) 

 
n)n(purelina ==

   
(2) 
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Fig. 2: The DR% of all 27 experiments. 
 



AFSHIN MALEKI  et al.,       J.Chem.Soc.Pak.,Vol. 34, No. 5, 2012   1060 

 
 

Fig. 3: Histogram of two DR% level (red lines: less than 80% and blue lines: more than 80%) for the three 
investigated levels of C0. 

 

 

 
 

Fig. 4: Histogram of two DR% levels (red line: less than 80% and blue line: more than 80%) for the three 
studied pH0 levels. 
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Fig. 5: Histogram of two DR% levels (red line: less than 80% and blue line: more than 80%) for three studied 
VEC levels.. 

 

 
 

Fig. 6: Plots of the ANN predicted values (colored surface) versus experimental DR% values (black dots) for 
C0 = 20 (mg/L) and pH0 = 7. 
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Results of MLR 
 
 
In order to compare ANN model with a 

simple classic approach, The SMLR method applied 
to develop a new model based on same train set of 
ANN. To improve the MLR model, 10 additional 
quadratic interaction effects considered rather than 
only 4 variables used in ANN model. For preventing 
co-linearity effect, the number of inputs reduced from 
14 to 9 using SMLR algorithm [35-37]. The best 
obtained model based on SMLR algorithm presented 
by Equation 3. 

 
 

DR%=113.65-0.104 (C0) + 4.02 (VEC) - 31.82 (PH0) 
+ 2.3 (tEC) + 0.3 (VEC)(PH0) + 0.245 (PH0) (tEC) -
0.051 (tEC)2-0.125 (VEC)2+ 1.19 (PH0)2  (3) 

 
 
The statistical parameters of the new nine 

models are listed in Table-1. The sample of MLR 
prediction values of DR% are presented graphically 
in Fig. 7 in the same way done for ANN model. 

 
 

Comparison between ANN and MLR models 
 

ANN and MLR models have been compared 
regarding their predictability. The plots of predicted 
versus experimental DR% for MLR and ANN models 
are presented in Fig. 8 and 9. A summary of 
statistical comparisons of ANN and MLR are given 
in Table-2. Based on above mentioned results and 
other reports, it appears that the ANN model 
described here is superior for predicting DR%. 

Graphical Prediction of Optimum Conditions 
 
 
Forecasting the optimum range of 

operational parameters to reduce the cost and fallacy 
of experiments is final aim of each experimental 
modeling system. In this study, graphical method of 
optimum parameters selected which has been 
declared based on MLR and ANN models prediction. 
Therefore, the new optimum experimental condition 
obtained using graphical method, tested in laboratory 
and the obtained DR% compared with MLR and 
ANN model predictions. It is also the additional test 
for MLR and ANN comparison. On the other hand, 
each real sample of textile dye wastewater has its 
own C0 and pH0. Then it is very important to obtain 
the best DR% for new condition regarding optimum 
tEC and VEC. 

 
 
Therefore, a sample of DB71 solution with 

C0 = 35 (mg/L) prepared and its pH0 adjusted to 6.7. 
In the following, two diagrams are presented based 
on MLR and ANN models prediction in Fig. 10. As 
the diagrams show, two models have an obvious 
difference in prediction. The ANN model predicts the 
efficient condition with optimum tEC about 20 (min) 
and 17 (v) and DR% more than 94 for this condition; 
however the MLR model predicts the DR% less than 
80 for the same condition. The experimental results 
can be used to compare the predictability of the two 
models. The experimental, DR% was 97.21, that is in 
good agreement with ANN results. It is also 
additional evidence to ANN prominence. 

 

 
 
Table-1: Nine descriptor statistical parameters. 

 Const. C0 V PH0 tEC (PH0)(tEC) tEC
2 PH2 V2 (V)(PH0) 

Coeff. 113.65 -0.104 4.02 -31.82 2.30 0.245 -0.051 1.19 -0.125 0.30 
t.value - -2.52 2.84 -5.02 3.77 4.47 -4.47 2.53 -3.11 1.99 
p.value - 0.013 0.005 0.000 0.000 0.000 0.000 0.013 0.002 0.048 

Where bi, st. error and t-test are the regression coefficients, standard errors of the regression coefficients and t significance respectively. 
 
 
Table 2.  The statistical comparisons of ANN and MLR models 

 
 

dataset  ANN MLR 
 1.00 0.79 Train 

RMSE 0.75 14.3 
 0.98  Validation 

RMSE 4.26  
 0.93 0.79 Test 

RMSE 8.00 13.7 
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Fig. 7: Plots of the MLR predicted values (colored surface) versus experimental DR% values (black dots) for 

C0 = 20 (mg/L) and pH0 = 7. 
 

 
Fig. 8: The plots of predicted versus experimental DR% for MLR model. 
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Fig. 9: The plots of predicted DR% versus experimental DR% for ANN model. 
 

 
Fig. 10: Prediction of DR% for experimental rang of VEC and tEC in new sample with pH0 = 6.7 and C0 = 35 

(mg/L) For a) MLR (right) and b) ANN model (left). 
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Further Statistical Evaluation of Models 
 
Cross Validation 

 
 
To avoid uncertainties related to select a 

single external test set, a more severe 216 (Leave-
one-out), 5 (leave 43-44 out) and 3 (leave 72 out) -
fold cross validation (CV) was used to verify the 
models predictability. In (n)-fold CV, the entire 
dataset is randomly split into n approximately equal 
size subsets. The model will then be trained and 
tested n times. Each time, one of the n subsets is used 
as the test set and the others (n-1) are put together to 
form a training set. The advantage of n-fold CV is 
that it is not important how the data are divided. 
Every data point appears in a test set only once, and 
in a training set (n-1) times. The overall accuracy of 
the constructed model is then just the simple average 
of the n individual accuracy measurements [38]. 

 
 
The  defined as a simple average of the 

n individual  in the 216, 5 and 3 fold cross 
validation. 2

CVQ  of ANN model is 1, 0.78 and 0.75, 
while this value for MLR model is 0.77, 0.78 and 
0.73. Based on presented Q2 definition, these results 
clearly proved the logical predictability of both 
models . 
 

 

Diversity Test 
 

The diversity involves defining a diverse 
subset so that researchers can scan only a subset of 
the huge database each time. In this study, diversity 
analysis was performed for the data set to make sure 
that composition of the training or test sets can 
represent those of the whole dataset [39, 40]. 

 
A database has been considered of n 

experimental conditions generated from m highly 
correlated independent variables. Each condition Xi is 
represented as a vector: 
 
Xi = (xi1, xi2, xi3, …,xim)T for experimental condition 
with i = 1, 2, n. 
 

Where xij denotes the value of independent 
variable j belongs to the condition Xi. The collective 
database X is represented by an n × m matrix X: 
 
X = (X1, X2, X3, …,Xn)T; 

Here the superscript T denotes the 
vector/matrix transpose. Distance score for two 
different experimental conditions X1 and X2 can be 
measured by the Euclidean; the mean distances of 
one sample to remaining ones were computed as 
follow: 
 
 

)( 2
k2k1

m
1k2112 xxXXd −∑=−= =  (4) 

 
Distance normalized based on the condition 

independent variables: 
 

1n
d

d i1
n

1i
1 −

∑= =

    
(5) 

 
Afterward the mean distances of all 

experimental conditions were normalized within an 
interval of 0-1. The closer to 1 the distance is, the 
more diverse from each other the compounds are. For 
the data sets, the normalized mean distances of 
experimental conditions vs. experimental DR% are 
shown in Fig. 11 for ANN datasets. It illustrates the 
diversity of experimental condition in the training 
and test validation sets. The training set with a broad 
representation of the input space was adequate to 
guarantee the model’s stability and the diversity of 
test set can prove the predictive quality of the model. 
 

 

Energy Consumption 
 
 

To evaluate the economic feasibility of EC, 
the energy consumption was calculated at the 
mentioned optimum condition in graphical prediction 
of optimum condition section as following [8]:  

 

1000m
tIV)kg

kwhumption(Energycons ECECEC=
 
(6) 

 

Where VEC is the applied voltage (Volt), IEC 
is the average current of electrolysis (Ampere), tEC is 
the electrolysis time (hour) and m is the weight of 
removed dye (kg). Weight of removed dye obtains by 
following equation: 

 
V)CC(10m 0

6 −= −
  (7) 

 

Where V is the volume of dye solution 
(mg/L) and C0 and C are initial and final dye 

concentrations (mg/L). It obtained 2.75  for 
DR% 97 at the optimum condition. The optimum 
energy consumption of this quantity reported for 
Acid Green dye by El-Ashtoukhy et.al [8]. 
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Fig. 11: The normalized mean distances of conditions vs. experimental DR% for ANN model inputs. 
 
Table-3: The chemical properties of DB71. 

1 The maximum absorption wavelength.  
 
Experimental 
 
Materials and Chemical Analysis 

 
DB71 dye purchased from (AlvandSabet, 

Iran). The chemical structure and some characte-
ristics of this dye are shown in Table-3. Dye solution 
prepared by dissolving the dye in distilled water. pH0 
of the solution measured and adjusted by NaOH (1N) 
and H2SO4 (1N) (Merck, Germany). The dye 
concentration was determined by calibration curve 
method using a PG T80+ spectrophotometer in the 
UV-VIS range (200-800 nm) at the λmax. The λmax of 
the solution was obtained in each experimental 
condition to prevent matrix effects. After EC 
progress, The DR% calculated for samples by 
equation 8: 

DR% = (1- C/C0)×100  (8) 
 
Where C0 and C are dye concentrations 

(mg/L) before and after EC, respectively. 
 

 
The EC system consisted of a glass 

(12cm*12cm*21cm (h)) Rectangular Cubic reactor, 
400 rpm mixer, DC power supply (the high stability-
reliability and low noise DC Adjustable Power 
Supply RXN-303D-II, Zhaoxin Electronic Tech. Co.) 
and two aluminum electrodes. lab-scale batch 
experimental setup of EC unit is shown in Fig. 12. 
The cathode and anode consist of sheets of 
4cm*5cm*0.1cm dimension and the immersed 
surface area of each electrode was 40cm2. They were 
placed vertically and dipped in 1.5 L aqueous dye 
solutions. The distance between electrodes fixed at 
1cm. A digital ammeter and voltmeter incorporated 
in the power supply applied to electrolysis current 
(IEC) and VEC monitoring during EC. 

 
27 experiments were done in three levels of 

three desired parameters, C0, VEC and PH0. In each 
run, 1.5 (L) dye solution was decanted into the 
electrolytic cell. Voltage adjusted desired value and 
electrolysis started. Each time, a 10 (ml) sample was 
extracted at same position of EC vessels in eight 
levels of tEC, 5, 10, 15, 20, 25, 30, 35 and 40 min. 
using 10 (ml) pipettes. Each sample centrifuged for 

Chemical Name Direct Blue 71 
Molecular Formula C40H23N7Na4O13S4 

CB Number CB7141269 

Molecular Structure 

 
Molecular Weight 1029.86 

CAS Number 4399-55-7 
EINECS 224-531-4 
λmax

1 522 nm 
1 The maximum absorption wavelength 
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10 min. in 3000 rpm. The DR% was investigated for 
decanted solution. 

 
.

 
 
Fig. 12:  The lab-scale batch experimental setup of 

EC unit. 
 
 

Methodology of Modeling 
 

DR% results collected according to the 
experiment plan. Multiple linear regressions (MLR) 
and Artificial neural network (ANN) methods used to 
modeling EC [7, 27]. The 216 DR% together with 
correspond experimental condition used as a data set. 
The four operational parameters considered as 
independent variables and inputs of models whilst the 
DR% was dependent variable. Data set was randomly 
divided into three parts. The training set was used to 
adjust the parameters of the models, validation to 
overtrain prevent and testing set used to evaluate its 
prediction ability [41, 42]. In order to obtain a more 
reliable model, the parameters that affect the 
performance of ANN models were optimized. 
selection of optimal number of hidden layers, number 
of hidden layer neurons, initial weight, initial bias, 
data sets and subsets and learning rate value for ANN 
was performed by systemically varying their values 
and types in the training step [43]. All calculations 
carried out on a Pentium IV PC with Intel(R) core 
(TM) i7 2.8 GHz processor. 

 
After the ANN model established, stepwise 

multiple linear regression (SMLR) method used to 
develop linear model based on the same ANN subsets 
except the test and validation sets that merged to use 
as an external test set. The quadratic interactions of 
independent variables have been considered to 

improve the MLR model efficiency. The more 
effective inputs and interactions selected using 
SMLR algorithm [27-29] 

 
In the following, the consistency of the 

models was revealed by tests quantified with 
predictive Q2. The Q2 values measure the quality of 
the predictions of the held out cases exactly in the 
same way as R2 does with the cases included in the 
modeling phase. But Q2 is always lower and may be 
even negative if the predictions are worse than if we 
just use the average value of the response. The Q2 
value should be at least 0.3-0.4 in order to assess 
whether the model has statistically significant 
prediction ability or not [44]. The Q2 values of the 
models are calculated by Equation 9. 

 
(
(∑ −

∑ −
−=

=

=
N

1i
2mean

exp
i
exp

N
1i

2i
ePr

i
exp2

)%DR%DR

)%DR%DR
1Q

 
(9) 

 
Here DR%exp and DR%pre are the 

experimental and the predicted DR%, respectively. 
DR% mean

exp  is the average of experimental DR% for 
training set. Another validation analysis of the 
comparison of ANN with other conventional methods 
is RMSE (Root-Mean-Square Error) as an indicator 
of reliability or accuracy of the models. RMSE is 
computed based on the data that fit the model, and 
that all misfits in the data are merely a reflection of 
the stochastic nature of the model [44]. RMSE values 
of the models are calculated by Equation 10. 

 

( 2
1

N
1i

2i
ePr

i
exp

N
)%DR%DRRMSE











 ∑ −
= =

 
(10) 

 
Conclusion 

 
Dye removal efficiency of solutions 

containing DB71 measured during EC. The effects of 
operational parameters of EC such as VEC, pH0, tEC 
and C0 were studied. The experimental results proved 
that EC is an effective technique for treatment of dye 
solutions containing DB71 and the DR% influenced 
by all these parameters. The effect of each operating 
parameter presented and studied by numerical 
modeling method. The ANN and MLR have been 
successfully used to modeling EC. By applying 
models to predict the test set,  and RMSE 
obtained 0.79 and 13.7 for MLR and 0.93 and 8.01 
for ANN. Finally, further experiments and data 
treatments such as new experimental condition tests, 
graphically selected optimum condition, diversity 
test, cross validation and energy consumption have 
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been successfully applied to the model in order to 
achieve more validity and to clarify other aspects of 
EC. 
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